Примеры расчетов и лабораторных по термеху и сопроматы

Основные виды зубчатых передач

В различных областях промышленности и приборостроения активно применяются все разновидности зубчатых передач. Ежегодно подобные механизмы производятся миллионными партиями. Сфера их использования настолько обширна, что найти прибор, в работе которого применяется вращательное движение без помощи зубчатых соединений, достаточно проблематично.

По конструктивному исполнению зубчатые передачи подразделяются на следующие категории:

  • Цилиндирическая. Используется наиболее часто, так как имеет более простую относительно других типов технологию производства шестерен. Цилиндрическая зубчатая передача применяется для передачи крутящего момента между валами, которые находятся в параллельных плоскостях. Может иметь несколько форм зубьев: прямые, косые и шевронные. Данный вид передач нашел свое применение в двигателях внутреннего сгорания, коробках передач подвижных составов, станков, буров. Он широко распространен в металлургии, машиностроении и других сферах промышленности.
  • Коническая. Получила свое название за счет необычной конструкции колесных пар. Имеет форму срезанного конуса, на котором нарезаны зубья. Величина профиля зубьев уменьшается от основания к вершине. Коническая зубчатая передача используется в сложных и комбинированных механизмах, для которых характерны частые изменения нагрузок и углов вращения. Примерами могут служить ведущие мосты автотранспорта, сельскохозяйственной техники или железнодорожных составов, приводы различных промышленных станков.
  • Реечная. Используется для преобразования вращательного движения в поступательное, и наоборот. При этом одна из шестерен заменяется плоскостью с нарезанными зубьями. Реечная передача проста в производстве и установке, способна выдерживать значительные нагрузки. В основном она применяется в механизме станков, основанных на поступательном движении: прессы, транспортеры с попеременной подачей, рулевые механизмы управления в переднеприводных автомобилях.

Любой вид зубчатых передач отличается продолжительным эксплуатационным периодом и надежностью работы (при соблюдении определенного уровня нагрузки и своевременном обслуживании). Сравнительно небольшой механизм способен обеспечить высокий КПД, благодаря чему и применяется для широкого круга задач.

Работа главной передачи

Принцип работы главной передачи достаточно прост: пока автомобиль находится в движении, крутящий момент двигателю передается от коробки передач, затем с помощью главной передачи и дифференциала на ведущие мосты автомобиля. Таким образом, главная передача напрямую изменяет крутящий момент, который передается на колеса автомобиля. В результате меняется и скорость вращения колес.

Главная особенность этой редуктора — передаточное число. Этот параметр отражает соотношение между количеством зубьев ведомой шестерни (соединенной с колесами) и ведущей (соединенного с вторичным валом коробки передач). Чем выше передаточное число, тем быстрее автомобиль разгоняется (увеличивается крутящий момент), но в то же время значение максимальной скорости значительно уменьшается. Уменьшение передаточного числа увеличивает скорость, но автомобиль начинает разгоняться медленнее. Для каждой модели автомобиля передаточное число подбирается с учетом характеристик двигателя, трансмиссии, размера колес, тормозной системы и т. д.

Осложнения при наличии зубчатой аденомы

Главной опасностью зубчатых аденом является возможность их злокачественной трансформации в рак. Еще несколько десятилетий назад считалось, что колоректальные злокачественные новообразования развиваются только из аденоматозных полипов. Соответственно, ворсинчатые новообразования рекомендовалось просто наблюдать. Но в последствии оказалось, что эти опухоли также могут перерождаться в рак, причем имея свой собственный, уникальный путь канцерогенеза. Риски злокачественной трансформации тем выше, чем больше размер полипа, и чем дольше он существует. Наиболее опасны в этом плане крупные длительно существующие новообразования на широком основании.

О действительных и мнимых превосходствах ЭЦ-зацепления

Далее мы намерены обратить внимание специалистов редукторной России на одну из новейших разработок В. Становского

Потому что других в России, по его мнению, и мнению Фонда перспективных исследований России, попросту нет. Речь об ЭЦ-зацеплении Становского, его действительных и мнимых свойствах и превосходствах.

Рисунок 1.

В январе 2018-го года в НТЦ «Редуктор» обратилось предприятие ООО «МЕХАНИКА-Р» с предложением срочно отремонтировать редуктор 5Ц2-125-12. 5, не прошедшим сравнительные испытания по шуму. Как заявили специалисты предприятия «МЕХАНИКА-Р», в этом редукторе применено ЭЦ-зацепление В. Становского . Наш анализ примененной в редукторе 5Ц2-125 зубчатой передачи показал, что это цилиндрическая зубчатая передача с выпукло-вогнутым зацеплением. Часть торцовых профилей этой передачи выполнена по обычным сопряженным эвольвентам, а вторая часть, по окружности, сопряженной с циклоидой в том же торцовом сечении, см. рис. 1.

Рисунок 2

На наш взгляд, ничего «революционного» в зтом техническом решении В. Становского нет. Аналогичные технические решения, когда профили или его части описываются дугами окружностей известны в патентной литературе. Такая передача вполне может быть классифицирована, как одна из разновидностей известной передачи с зацеплением Новикова — со «смешанным», т. е. двойным контактом (см. рис. 2) . Такой «смешанный» контакт в зубчатых передачах в одних случаях оказывает положительное, а в других — отрицательное влияние на эксплуатационные свойства передачи.

Важно отметить, что, как и прежние выпукло-вогнутые передачи Новикова, передача Становского с ЭЦ-зацеплением —дозаполюсная. Полюс этой передачи расположен примерно по средине высоты зубьев

И если это так, то примененная в редукторе 5Ц2-125-12.5 передача с ЭЦ-зацеплением содержит в себе все признаки и хронические недостатки полюсных передач, где свойства полюса улучшить невозможно, из-за чего как раз все прежние российские передачи с зацеплением Новикова с выпукло-вогнутыми торцовыми профилями оказались совершенно неконкурентоспособными по сравнению с передачами, применяемыми зарубежными редукторными фирмами.

Тем не менее, сказанное здесь об ЭЦ-зацеплении — это сугубо локальное дискуссионное мнение В. И. Парубца, выигравшего прежде дискуссию о действительных и мнимых превосходствах российских зубчатых передач с зацеплением Новикова. Но, не ознакомленного подробно со всеми особенностями теоретических разработок и испытаний ЭЦ-зацепления, примененного в редукторе 5Ц2-125-12.5.

Поэтому, чтобы восполнить этот пробел и получить необходимую информацию мы обратились на сайт В. Становского, и неожиданно нашли на нем совершенно новую информацию, с уверенностью можно сказать, важную для настоящего и будущего редукторной практики всех отраслей промышленности России.

Источник цитаты: http://www.ec-gearing.ru/news.php?id=109,

Речь идет об Акте научно-технической приемки аванпроекта «Экспериментальные исследования характеристик эксцентриково-циклоидальной зубчатой передачи в сравнении с другими, широко применяемыми в машиностроении с целью формирования рекомендаций по ее применению». Акт подписан и утвержден специалистами и генеральным директором Фонда перспективных исследований России А. И. Григорьевым

Согласно Акту, аванпроект по столь важной для редукторной России теме, считается законченным и принятым

В Акте Исполнителю аванпроекта рекомендовано:

Ознакомить с результатами сравнительных испытаний заинтересованные организации и производителя контрольного редуктора ООО «Зарем» .

Типы главной передачи по виду зубчатого соединения

Если разделить типы главных передач, тогда можно выделить:

  • цилиндрическую;
  • коническую;
  • червячную;
  • гипоидную;

Цилиндрическая главная передача применяется на легковых переднеприводных автомобилях с поперечным расположением двигателя и коробки передач. Ее передаточное число находится в пределах 3,5-4,2.

Шестерни цилиндрической главной передачи могут быть прямозубыми, косозубыми и шевронными. Цилиндрическая передача имеет высокий КПД (не менее 0.98) но она уменьшает дорожный просвет и довольно шумная.

Коническая главная передача применяется на заднеприводных автомобилях малой и средней грузоподъемности с продольным расположением ДВС, где габаритные размеры не имеют значения.

Оси шестерней и колеса такой передачи пересекаются. В этих передачах применяют прямые, косые или криволинейные (спиральные) зубья. Снижение шума достигается применением косого или спирального зуба. КПД главной передачи со спиральным зубом достигает 0.97-0.98.

Червячная главная передача может быть как с нижним, так и с верхним расположением червяка. Передаточное число такой главной передачи находится в пределах от 4 до 5.

По сравнению с другими типами передач, червячная передача компактнее и менее шумная, но имеет низкий КПД 0.9 — 0.92. В настоящее время применяется редко по причине трудоемкости изготовления и дороговизны материалов.

Гипоидная главная передача представляет собой один из популярных видов зубчатого соединения. Эта передача своего рода компромисс между конической и червячной главной передачей.

Передача применяется на заднеприводных легковых и грузовых автомобилях. Оси шестерней и колеса гипоидной передачи не пересекаются, а скрещиваются. Сама передача может быть как с нижним, так и с верхним смещением.

Главная передача с нижним смещением позволяет расположить ниже карданную передачу. Следовательно, смещается и центр тяжести автомобиля, повысив его устойчивость при движении.

Гипоидная передача по сравнению с конической имеет большую плавность, бесшумность, меньшие габариты. Ее применяют на легковых автомобилях с передаточным числом от 3,5-4,5, и на грузовых вместо двойной главной передачи с передаточным числом от 5-7 . При этом КПД гипоидной передачи составляет 0.96-0.97.

При всех своих плюсах гипоидная передача имеет один недостаток – порог заклинивания при обратном ходе автомобиля (превышение расчетных оборотов)

По этой причине водителю необходимо проявлять особую осторожность при выборе скорости движения задним ходом

Принцип работы

В большинстве случаев генератор энергии и конечный агрегат имеют разные характеристики. Они отличаются по скорости вращения, мощности, углу приложения усилия. Чтобы обеспечить доставку крутящего момента от двигателя до конечного агрегата, необходимо использовать промежуточные модули, способные передавать усилие с минимальными потерями.

Такими модулями служат зубчатые колеса (шестерни). Они представляют собой диск с зубьями, расположенный на цилиндрической или конической поверхности. Обычно они используются парами разного диаметра с одинаковым количеством зубьев.

Во время работы механизма зубья двух шестерен сцепляются. Головка зуба входит в зацепление с повторяющим ее форму углублением на соседней шестерне. При проворачивании ведущего вала ведомый начинает вращаться в противоположную сторону.

Таким образом, вращающий момент передается от одного элемента к другому. Если диаметр ведущего колеса больше, то вращающий момент ведомого колеса уменьшается, и наоборот.

Основные параметры

Для обеспечения подвижности и работоспособности, конструкция отдельных деталей механической передачи должна быть согласована по размерам и геометрии. Для этого при описании подобных устройств принято использовать систему специальных параметров. В их число входят геометрические, массогабаритные и прочностные величины, закрепленные стандартами. Применение стандартных параметров позволяет сравнительно просто производить расчет унифицированных зубчатых передач и обеспечивает гарантированное сопряжение всех изделий между собой. Естественно, что для разных видов, параметры будут несколько отличаться. Далее рассматриваются термины, связанные с конструкцией эвольвентного цилиндрического колеса. Эти параметры, в своем большинстве, описывают основные характеристики и других вариантов колес.

В основе сечения зуба большинства шестерен лежит эвольвентный профиль, который  получается на основе одноименной кривой. Его применение легко стандартизируется,  характеризуется высокой технологичностью изготовления и низкими требованиями к качеству сборки механизма. Основными параметры эвольвентного зубчатого колеса  считаются модуль зацепления и количество зубьев зубчатого колеса. При одном и том же наружном диаметре деталей значения этих величин могут существенно отличаться в разных вариантах конструкции.

Число зубьев определяет коэффициент передачи и геометрические размеры зубьев. На ведущем колесе редуктора оно выполняется меньшим, чем на ведомом. В итоге один нормальный оборот ведущей шестерни приводит к повороту ведомого колеса только на определенный угол. Отношение числа зубьев двух колес  дает значение передаточного коэффициента. Размеры зубьев определяются как отношение их количества к длине окружности колеса. С целью упрощения расчетов и гарантированного обеспечения зацепления между разными колесами, предусмотрен дополнительный параметр, называемый модулем зацепления. Любые шестерни с одинаковым модулем обеспечивают взаимодействие между собой и могут использоваться для построения механизмов, без дополнительной обработки.

Сумма ширины зуба и впадины совместно дают шаг зубчатого колеса. Учитывая неравномерность профиля по радиусу и зависимость длины дуги от диаметра, в каждом колесе можно определить бесконечное число значений этого параметра. С целью стандартизации принято рассматривать шаг по делительной окружности, называемый так же окружным шагом. Отношение этого шага к числу пи дает модуль зацепления. В некоторых случаях для описания шестерен используют угловой шаг,  измеряемый в градусах. Стандартами предусмотрены и несколько других угловых величин. Например, для упрощения настройки оборудования при изготовлении колес рассматривают угловую ширину зуба и угловую ширину впадины. Определяются они также на основе делительной окружности.

Достоинства и недостатки

Рассматриваемое устройство характеризуется довольно большим количеством достоинств и недостатков, которые во многом определяют область применения. К преимуществам отнесем следующие моменты:

  1. Длительный эксплуатационный срок и высокая надежность. Применение стали в качестве основного материала при изготовлении механизма определяет то, что оно может прослужить в течение длительного периода. Поверхность зуба дополнительно закаливается для снижения степени износа.
  2. При правильном и своевременном обслуживании эксплуатационный срок существенно увеличивается. Примером можно назвать применение смазывающего масла, его подачу в зону контакта.
  3. Устройство характеризуется небольшими размерами. За счет этого повышается КПД зубчатой передачи.
  4. Передача может применяться для изменения скорости в достаточно большом диапазоне.
  5. При правильном выборе колес можно исключить вероятность воздействия на поверхность чрезмерной нагрузки.

Коэффициент КПД может варьировать в достаточно большом диапазоне, зачастую он ниже 70%.

Недостатков у зубчатой передачи также довольно много. Основными можно назвать следующие моменты:

  1. При высокой скорости вращения появляется сильный шум, который может создавать массу дискомфорта.
  2. Устройство не может быстро реагировать на изменение нагрузок.
  3. Основные элементы дороги в изготовлении, получить их можно только при применении специального оборудования.

В заключение отметим, что привод угловой зубчатой передачей зачастую является незаменимым устройством. В большинстве случаев основные элементы зубчатой передачи изготавливаются в зависимости от того, какое устройство нужно получить. Большая доля производственной деятельности машиностроительных заводов связана с непосредственным производством зубчатых колес различного типа.

Замена обгонной муфты генератора

Для начала следует пояснить два момента. Первый – муфта является узлом не разборным и не подлежит ремонту. Поэтому, любые попытки ее починить, скорее всего, обернутся провалом и могут стать причиной ее заклинивания. Второй момент – если шкив генератора имеет простую гайку, то это не обгонная муфта, а самый обыкновенный шкив. Гайка муфты имеет специальную крышку, которая защищает ее и механизм муфты от попадания инородных частиц и влаги.

Чтобы снять муфту, ослабьте ремень генератора с помощью регулировочной планки и открутите гайку крепления муфты. Для этого применяйте головку, так как простым ключом подлезть практически невозможно.

После снятия муфты, установите новый механизм. При монтаже старайтесь не применять ударных инструментов, так как это может стать причиной заклинивания, которое негативно скажется на ремне. Если она идет слишком туго, то используйте мягкую прокладку между молотком и муфтой.

На этом замена муфты завершается. Проверить ее работу можно, покрутив ее в разные стороны. Как правило, исправная муфта вращается только в одну сторону, а в другую она вращается вместе со шкивом генератора. 

https://youtube.com/watch?v=gnfwWKjo7jU

Модификации

Диалоги и просветительская работа НТЦ «Редуктор»

Одним из принципов, которым руководствуется НТЦ «Редуктор» в своей научной и практической деятельности, является диалог и просветительская работа с заказчиками. Целью является достижение у компаний-клиентов наивысших эксплуатационных и финансовых результатов при применении изделий и услуг от НТЦ «Редуктор».

Эти диалоги и просветительская работа реализуются нами разными способами:

  • через статьи, публикуемые в научно-технических журналах;
  • через сайт предприятия;
  • через обсуждения в ходе выполнения заказов и др.

Наиболее продуктивными оказались дискуссии и наша просветительская работа через журнал «РЕДУКТОРЫ и ПРИВОДЫ», ранее издаваемый НТЦ «Редуктор». Итоги этой работы впечатляющие. Результатом острой дискуссии, организованной усилиями НТЦ «Редуктор» в 2005-2007 годах в журнале «РЕДУКТОРЫ и ПРИВОДЫ», стал отказ большинства предприятий промышленной России от производства и применения неконкурентных редукторов с передачами Новикова. С последующей их заменой редукторами с твердыми точно шлифованными эвольвентными передачами.

Одиннадцать лет, прошедших после завершения дискуссии, более чем убедительно показали, что прогрессивная редукторная Россия освободилась от устаревших научных догм Новикова и его учеников: Короткина, Яковлева и других. И, тем самым, сократила прежнее полувековое технологическое отставание от ведущих зарубежных редукторных фирм из Швейцарии, Германии, Японии и др.

Убедительным практическим доказательством является то, что редукторное предприятие «ЗАРЕМ» из Майкопа, ранее в советские годы построенное специально для производства редукторов с передачами Новикова, в последние годы решительно изменило свой прежний конструкторский и технологический курс. Производственные мощности оснащены современными высокоточными зарубежными зубошлифовальными станками. Вместо передач Новикова производят высокоточные и высокомощные эвольвентные зубчатые передачи и редукторы, ни в чем не уступающие по эксплуатационным свойствам, надежности и долговечности эвольвентным зубчатым передачам и редукторам ведущих зарубежных производителей.

В целом, это означает, что благодаря дискуссии и просветительской работе нашей компании редукторная практика России, отбросив разработки и рекомендации отсталой российской науки, после 50 летнего отставания встала на путь конкурентоспособного производства зубчатых передач и редукторов и теперь в состоянии противостоять зарубежной редукторной экспансии и вытеснять редукторную продукцию импортного производства.

Замена обгонной муфты генератора

Решив проблему долговечности приводного ремня, к сожалению не удалось избавиться от всех проблем. Ресурс самой обгонной муфты достаточно невелик. Как правило это максимум 100 тыс. км. Но как показывает практика не некоторых моделях автомобилей обгонная муфта летит уже на 50 тыс

Характерный треск из моторного отсека и вибрация по кузову при заклинивании является сигналом для того, чтобы обратить внимание на состояние муфты. К сожалению ремонт обгонной муфты невозможен или чреват заклиниванием в недолгом будущем, поэтому если у Вас случилась такая неприятность, то только замена

Замену обгонной муфты лучше производить в профильной мастерской, так как для этого необходим специальный съемник (инструмент). При этом снять обгонную муфту можно по-разному. На некоторых моделях авто замена возможна без снятия генератора с автомобиля, на некоторых без снятия не обойтись. В любом случае лучше довериться профессионалам, тем более, что цена на замену обгонной муфты достаточно невысока, особенно в нашей мастерской. Если Вам необходима данная операция, то звоните и записывайтесь на ремонт генератора. О стоимости ремонта конкретной модели Вам расскажут наши специалисты по телефону.

Так же можем предложить замену на обычный шкив (в некоторых случаях это возможно и не несет глобальных последствий). Мы дадим консультации в любом случае и постараемся сделать ремонт по минимальной стоимости. Так же Вы можете обменять Ваш генератор на восстановленный и это может еще снизить Ваши расходы. Мы принимаем сломанные генераторы на обмен, учитывая стоимость Вашего.

Основные геометрические параметры

Построение кинематической схемы, технические характеристики, способы обработки отдельных деталей этих механизмов задаются геометрической формой отдельных элементов. Основными геометрическими параметрами, которые рассчитываются при проектировании являются:

  • углы делительных конусов (каждого колеса или шестерёнки);
  • диаметры всех элементов (обоих валов, ведущих и ведомых шестерён);
  • внешний окружной модуль шестерни;
  • расстояние от вершины конуса до его образующей (называется делительное расстояние);
  • расстояние между осей;
  • радиальный зазор применяемых подшипников;
  • делительный диаметр (он определяет величину зуба шестерёнки);
  • диаметр углублений и верхней части зубьев.

Для удобства проведения расчетов и понимания механизма зацепления вводят три вида торцовых сечений. Это сечения во внешней, внутренней и средней части каждого зуба.

Уменьшение толщины зубьев по направлению к вершине приводит к созданию надежного зацепления во время движения. Угол наклона по направлению к вершине определяет параметры, задаваемые при обработке.

Под линией зубьев понимают пересечение двух прямых. Одна образована боковой поверхностью зуба, вторая является краем делительной конической поверхности.

Для улучшения эксплуатационных характеристик — повышения износостойкости, сопротивления при контакте, уменьшение заедания и лучшей передачи коническим зубчатым колёсам энергии вращения используют метод выравнивания коэффициентов удельного скольжения.

С этой целью колесо и шестерню стараются изготовить с одинаковыми параметрами смещения, но с разными знаками. Например, для шестерни задают параметр со знаком плюс, а для колеса со знаком минус.

Основные геометрические соотношения задаются на этапе разработки всего механизма конической передачи качество передачи. Геометрические параметры рассчитываются на основании известных соотношений.

Изготовление зубчатых колёс

Существует несколько  методов изготовления колес.

Метод обката

В настоящее время является наиболее технологичным, а поэтому и самым распространённым способом изготовления зубчатых колёс. При изготовлении зубчатых колёс могут применяться такие инструменты, как гребёнка, червячная фреза и долбяк.

Метод обката с применением гребёнки

Изготовление шестерни.
Изготовление зубчатого колеса.

Режущий инструмент, имеющий форму зубчатой рейки, называется гребёнкой. На одной стороне гребёнки по контуру её зубьев затачивается режущая кромка.

Заготовка накатываемого колеса совершает вращательное движение вокруг оси. Гребёнка совершает сложные перемещения, состоящие из поступательного движения перпендикулярно оси колеса и возвратно-поступательного движения (на анимации не показано), параллельного оси колеса для снятия стружки по всей ширине его обода. Относительное движение гребёнки и заготовки может быть и иным, например, заготовка может совершать прерывистое сложное движение обката, согласованное с движением резания гребёнки.

Заготовка и инструмент движутся на станке друг относительно друга так, как будто происходит зацепление профиля нарезаемых зубьев с исходным производящим контуром гребёнки.

Метод обката с применением червячной фрезы

Помимо гребёнки в качестве режущего инструмента применяют червячную фрезу. В этом случае между заготовкой и фрезой происходит червячное зацепление.

Метод обката с применением долбяка

Зубчатые колёса также долбят на зубодолбёжных станках с применением специальных долбяков.

Зубодолбёжный долбяк представляет собой зубчатое колесо, снабжённое режущими кромками. Поскольку срезать сразу весь слой металла обычно невозможно, обработка производится в несколько этапов.

При обработке инструмент совершает возвратно-поступательное движение относительно заготовки. После каждого двойного хода, заготовка и инструмент поворачиваются относительно своих осей на один шаг. Таким образом, инструмент и заготовка как бы «обкатываются» друг по другу. После того, как заготовка сделает полный оборот, долбяк совершает движение подачи к заготовке. Этот процесс происходит до тех пор, пока не будет удалён весь необходимый слой металла.

Литейная форма для бронзового храпового колеса (Китай, династия Хань. (206 до н. э. — 220 н. э.)).

Метод копирования (Метод деления)

Дисковой или пальцевой фрезой нарезается одна впадина зубчатого колеса. Режущая кромка инструмента имеет форму этой впадины. После нарезания одной впадины заготовка поворачивается на один угловой шаг при помощи делительного устройства, операция резания повторяется.

Метод применялся в начале XX века. Недостаток метода состоит в низкой точности: впадины изготовленного таким методом колеса сильно отличаются друг от друга.

Горячее и холодное накатывание

Процесс основан на последовательной деформации нагретого до пластического состояния слоя определенной глубины заготовки зубонакатным инструментом. При этом сочетаются индукционный нагрев поверхностного слоя заготовки на определенную глубину, пластическая деформация нагретого слоя заготовки для образования зубьев и обкатка образованных зубьев для получения заданной формы и точности.

Изготовление конических колёс

Технология изготовления конических колёс теснейшим образом связана с геометрией боковых поверхностей и профилей зубьев.

Способ копирования фасонного профиля инструмента для образования профиля на коническом колесе не может быть использован, так как размеры впадины конического колеса изменяются по мере приближения к вершине конуса. В связи с этим такие инструменты, как модульная дисковая фреза, пальцевая фреза, фасонный шлифовальный круг, можно использовать только для черновой прорезки впадин или для образования впадин колёс не выше восьмой степени точности.

Для нарезания более точных конических колёс используют способ обкатки в станочном зацеплении нарезаемой заготовки с воображаемым производящим колесом. Боковые поверхности производящего колеса образуются за счёт движения режущих кромок инструмента в процессе главного движения резания, обеспечивающего срезание припуска. Преимущественное распространение получили инструменты с прямолинейным лезвием. При прямолинейном главном движении прямолинейное лезвие образует плоскую производящую поверхность. Такая поверхность не может образовать эвольвентную коническую поверхность со сферическими эвольвентными профилями. Получаемые сопряжённые конические поверхности, отличающиеся от эвольвентных поверхностей, называют квазиэвольвентными.

Добавить комментарий Отменить ответ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector