В чем разница между коллекторными и бесколлекторными моторами?
Содержание:
- Достоинства и недостатки
- Применение и устройство коллекторных электродвигателей
- Работа омметром
- Асинхронные моторы
- Перемотка якоря электродвигателя
- Коллекторный двигатель постоянного тока с магнитами
- Конструкция[править]
- Определение и устройство
- Основные неисправности
- Схемы подключения однофазных асинхронных двигателей
- Блог-помощника машиниста
- Общее устройство коллекторных двигателей
- Как подобрать солнечный коллектор нужной мощности
- Неисправности впускного коллектора
- Характеристики[править]
- Двигатель постоянного тока: коллекторный или бесколлекторный?
Достоинства и недостатки
Как водится, начнём с перечисления плюсов. Достоинства коллекторных электромоторов такие:
- Простое устройство.
- Высокая скорость до 10 000 об/мин.
- Хороший крутящий момент даже на малых оборотах.
- Невысокая стоимость.
- Возможность регулировать скорость в широких пределах.
- Невысокие пусковые токи и нагрузки.
Схема коллекторного двигателя
Неплохие качества, но есть и недостатки, причём они не менее серьёзные. Минусы коллекторных электродвигателей такие:
- Высокий уровень шумов при работе. Особенно на высоких скоростях. Щетки трутся о коллектор, дополнительно создавая шумы.
- Искрение щёток, их износ.
- Необходимость частого обслуживания коллекторного узла.
- Нестабильность показателей при изменении нагрузки.
- Высокая частота отказов из-за наличия коллектора и щёток, малый срок службы этого узла.
В целом, коллекторный двигатель неплохой выбор, иначе его не ставили бы на бытовой технике. Справедливости ради стоит сказать, что при нормальном качестве исполнения, работают такие двигатели годами. Могут и 10-15 лет проработать без проблем.
Применение и устройство коллекторных электродвигателей
Коллекторный электродвигатель по своему устройству принципиально не отличается от двухполюсного двигателя постоянного тока последовательного возбуждения. К отличительным особенностям коллекторных двигателей относятся: высокая скорость вращения якоря, малые габаритные размеры и масса. Используются в пылесосах, кухонных машинах, ручных электроинструментах. Для указанных машин, как правило, применяются универсальные (встраиваемые) коллекторные электродвигатели. Универсальными принято называть коллекторные двигатели, которые работают как от переменного, так и постоянного тока.
Коллекторный электродвигатель переменного тока конструктивно сложнее двигателя постоянного тока. Эти усложнения связаны с необходимостью набора сердечника индуктора из отдельных листов, а также закладывания дополнительной обмотки, компенсирующей явления, связанные с искрением под щетками. Нельзя не отметить и такие недостатки этих машин, как высокий уровень шума, помехи радиоприему, стирание угольных щеток. Вместе с тем по некоторым параметрам они превосходят асинхронные двигатели. К ним можно отнести: большое значение максимальной скорости вращения (до 25 000 об/мин), возможность ее плавной регулировки, наличие хороших пусковых данных.
Для того чтобы понять, как работает коллекторный электродвигатель, его принцип работы можно проиллюстрировать на следующем простом опыте (рис. 1). Если пустить ток по рамке прямоугольной формы, помещенной между полюсами магнита (постоянного или электромагнита), она начинает вращаться. С помощью контактов-полуколец обеспечивается переключение тока в рамке, благодаря чему осуществляется ее непрерывное вращение в одном направлении. Коллекторные двигатели содержат много таких рамок, и соответствующее количество пар контактов. Таким образом, работа двигателей данного вида обеспечивается за счет взаимодействия магнитных полей, присутствующих в статоре и якоре.
На рис. 2 показана схема, поясняющая подключение коллекторных электродвигателей. Вся силовая нагрузка выполняется симистором, подающим напряжение на двигатель и подключенный к нему последовательно.
Электродвигатели коллекторные однофазные имею высокую удельную мощность. Ими довольно широко и успешно оснащают бытовую технику и ручной электроинструмент. Коллекторные однофазные электродвигатели установлены на подавляющей части бытовых электроприборов. Подключение к сети постоянного тока осуществляется с помощью всей обмотки возбуждения. Для подключения к переменной сети используется лишь часть ее. Это освобождает от необходимости включения компенсационных обмоток.
Оригинал статьи размещен на нашем сайте cable.ru .
Источник
Работа омметром
Искренние могло происходить из-за пропадания электрического контакта в одной из ламелей. Для замера сопротивления рекомендуется ставить щупы со стороны токосъемников. Вращая вал двигателя, наблюдают за показаниями циферблата. На экране должны быть нулевые значения. Если проскакивают цифры даже в несколько Ом, то это говорит о нагаре. При появлении бесконечного значения судят об обрыве в цепи.
Независимо от результатов далее следует проверить сопротивление между каждыми соседними ламелями. Оно должно быть одинаковым для каждого замера. При отклонениях нужно осмотреть все соединения катушек и поверхность прилегания щёток. Сами щетки должны иметь равномерный износ. При сколах и трещинах они подлежат замене.
Катушки соединяются с сердечником проводкой, которая могла отслоиться. Припой часто не выдерживает ударов от падений. У стартера ток через контакты может достигать 50А, что приводит к прогоранию некачественных соединений. Внешним осмотром определяют места повреждений. Если не обнаружили неисправности, то проводят замер сопротивления между ламелью и самой катушкой.
Асинхронные моторы
Двигатели такого типа появились довольно давно и очень часто применяются в промышленности. Это обусловлено тем, что здесь используют трехфазные электрические сети. Принцип работы такой системы можно описать несколькими последовательными шагами:
- Статор мотора представляет собой обмотку из медной проволоки. Она может быть двух- или трехфазной. При подаче на него тока появляется магнитное поле.
- Ротор же представляет собой металлический цилиндр, который способен вращаться на подшипниках. Когда возбуждается магнитное поле в обмотке статора, это продуцирует аналогичное явление и в роторе. По-простому цилиндр просто старается догнать поле и это приводит к появлению вращения. Обусловлено это небольшим смещением фаз, которое может быть разным в зависимости от типа мотора.
Советы в статье «Приточные установки от магазина «Вент-заводы».» здесь.
Отличительной особенностью асинхронного двигателя является отсутствие скользящего контакта (в коллекторном моторе это щетки и сам коллектор). Поэтому такие механизмы намного надежней, чем конструкции на основе коллекторов. Обслуживать асинхронные модификации нужно не так часто. Коллекторный двигатель невозможно сделать с большой мощностью, что ограничивает среду их применения.
Источник
Перемотка якоря электродвигателя
Большое значение в поддержании работоспособности любого электрического прибора, оснащенного электродвигателем, и продлении срока его эксплуатации имеет проведение с определенной регулярностью планово-предупредительных ремонтов. Это будет способствовать предупреждению и устранению различных неполадок.
Почему возникает необходимость перемотки якоря электродвигателя
Но все же, иногда может потребоваться перемотать обмотку якоря стартера. Это может быть обусловлено следующими причинами:
- Имеет место повреждение обмотки или коллектора.
- Витки обмотки замкнули между собой.
- От чрезмерного нагрева спеклись ламели.
- Перегорела обмотка электродвигателя.
Обмотка стартера помещается в изоляцию, чем обеспечивается эффективная защита от перегрева. Но если двигатель эксплуатировался очень длительно, он изнашивается и его обмотка может повредится. Она просто сгорит. Иногда перемотать обмотку якоря обойдется владельцу дороже, чем приобрести новый стартер. Это обусловлено тем, что дополнительно потребуются различные запчасти. К тому же, подобрать что-то подходящее на замену иногда бывает очень сложно. Тогда остается только провести балансировку и перемотать обмотку якоря.
Надо сказать, что процесс перемотки довольно сложный и кропотливый, требующий немало временных затрат. Поэтому качественно перемотать обмотку якоря можно далеко не в каждой мастерской.
Этапы и особенности перемотки якоря электродвигателя
Подобные действия можно осуществлять, когда проводится капитальный либо текущий ремонт. По технологии процесс сходен с тем случаем, когда ремонтируют катушки электродвигателя.
- Вначале агрегат подвергается визуальному осмотру. Выявляют причину выхода из строя. А это может быть замыкание или обмотка элементарно перегорела.
- После этого мастер с предельной аккуратностью проведет извлечение витков обмотки. При этом стараются максимально сохранить все секционные изгибы.
- Обнаруженные дефекты в форме обмотки исправляются посредством шаблона.
- Если обнаруживается значительный износ элементов, то их заменяют новыми деталями. Например, меняют втулку подшипника, а если имеет место замыкание, осуществляют установку нового коллектора.
- Производят демонтаж старой изоляции, а паз подвергают новой герметизации.
- Затем мастер аккуратно уложит секции обмотки в пластины. При этом учитывается шаг паза. В пространство между витками проводят укладку изоляционного материала. Если речь идет о стартере промышленного агрегата, то в качестве него используется шнур. В простых моделях обычно используют изоляционный картон.
- Затем секции необходимо запрессовать, а обмотку закрепить на пластинах коллектора.
- После этого необходимо провести испытания.
- Затем якорь необходимо пропитать и просушить. Для этого используется специальный лак. Он обеспечит якорю защиту, и в то же время будет служить проводником. Процесс сушки осуществляется в специальных печах
Коллекторный двигатель постоянного тока с магнитами
В коллекторных двигателях постоянного тока постоянное магнитное поле обеспечивают:
- постоянные магниты;
- обмотки возбуждения.
Магниты и обмотки располагаются на корпусе статора, и чаще всего, вверху и внизу. Если говорить о маломощных моторах, то более популярны коллекторные двигатели с постоянными магнитами. Они проще в производстве, дешевле, быстро реагируют на изменение напряжения, что позволяет плавно регулировать скорость. Недостаток моторов с постоянными магнитами является их невысокая мощность, а еще то, что со временем или при перегреве магниты теряют свои свойства и это приводит к ухудшению характеристик двигателя.
Устройство коллекторного двигателя постоянного тока
Такие моторы имеют небольшую мощность, от единиц до сотен Ватт. Они используются в технике, для которой важна плавная регулировка скоростей. Это обычно детские игрушки, некоторые виды бытовой техники (в основном вентиляторы). Недостатком коллекторного мотора с магнитами является постепенная потеря мощности, магниты со временем становятся слабее, и без того небольшая мощность падает. Но в последнее время появились новые магнитные сплавы с большой магнитной силой, позволяющие создавать двигатели с большой мощностью.
Конструкция[править]
Микроэлектродвигатели имеют магнитопровод якоря, выполненный в виде трехзубцового пакета из штампованных листов электротехнической стали.
На рисунке обозначено: 1 — щит; 2 — якорь; 3 — корпус; 4 — коллектор; 5 — постоянные магниты; 6 — скоба; 7 — прокладка.
Петлевая обмотка якоря, имеющая три укороченные секции, намотана непосредственно на зубцы пакета и соединяется в звезду или треугольник. Начало в крышке машины, и трехламельный цилиндрический коллектор, напрессованный каждой секции присоединено к коллекторной пластине. Питание двигателя осуществляется через щеточный узел, смонтированный на валу якоря.
Определение и устройство
В справочниках и энциклопедиях приводят, такое определение:
«Коллекторным называется электродвигатель, у которого датчиком положения вала и переключателем обмоток является одно и то же устройство – коллектор. Такие двигатели могут работать либо только на постоянном токе, либо и на постоянном, и на переменном.»
Коллекторный электродвигатель, как и любой другой, состоит из ротора и статора. В этом случае ротор – является якорем. Напомним, что якорем называется та часть электрической машины, которая потребляет основной ток, и в которой индуцируется электродвижущая сила.
Для чего нужен и как устроен коллектор? Коллектор расположен на валу (роторе), и представляет собой набор продольно расположенных пластин, изолированных от вала и друг от друга. Их называют ламелями. К ламелям подключаются отводы секций обмоток якоря (устройство якорной обмотки КДПТ вы видите на группе рисунков ниже), а точнее к каждой из них подключен конец предыдущей и начало следующей секции обмотки.
Ток к обмоткам подаётся через щетки. Щётки образуют скользящий контакт и во время вращения вала соприкасаются то с одной, то с другой ламелью. Таким образом происходит переключение обмоток якоря, для этого и нужен коллектор.
Щеточный узел состоит из кронштейна с щеткодержателями, непосредственно в них и устанавливаются графитовые или металлографитовые щетки. Для обеспечения хорошего контакта щетки прижимаются к коллектору пружинами.
На статоре устанавливаются постоянные магниты или электромагниты (обмотка возбуждения), которые создают магнитное поле статора. В литературе по электрическим машинам вместо слова «статор» чаще используют термины «магнитная система» или «индуктор». На рисунке ниже изображена конструкция ДПТ в разных проекциях. Теперь же давайте разберемся как работает коллекторный двигатель постоянного тока!
Основные неисправности
Искрение, возникающее между щетками и коллектором – самый главный вопрос, требующий внимания. Чтобы избежать неисправностей более серьезных, таких как их отслаивание и деформация или перегрев ламелей, сработавшуюся щетку необходимо заменить.
Помимо этого, возможно замыкание между обмотками якоря и статора, вызывающее сильное искрение на переходе коллектор-щетка или значительное падение магнитного поля.
Видео: Коллекторный электрический двигатель
Мы вновь возвращаемся в мир занимательного — как электротехника, так как считаю, что эти знания нам просто всем необходимы в нашей повседневной жизни.
Читать также: Как пользоваться точечной сваркой
Схемы подключения однофазных асинхронных двигателей
С пусковой обмоткой
Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.
Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»
Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.
Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).
Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):
- один с рабочей обмотки — рабочий;
- с пусковой обмотки;
- общий.
С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.
Со всеми этими
Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВСподключение однофазного двигателя
Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)
К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку
Конденсаторный
При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).
Схемы подключения однофазного конденсаторного двигателя
Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.
Схема с двумя конденсаторами
Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым
При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.
Подбор конденсаторов
Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:
- рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
- пусковой — в 2-3 раза больше.
Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.
Блог-помощника машиниста
Все электрические машины подразделяются по значению на два вида: Генераторы, Двигатели. Принципиально, что генераторы, что двигатели устроены одинаково.
Генераторы— при вращение ветка его рабочие стороны пересекают магнитные селевые линии полюсов, поэтому в них индуктируется ЭДС. Если к ветку подсоединить проводники и нагрузку (потребитель лампочка) то в цепи пойдет электрический ток. Этот ток будет направлен также как и ЭДС. Этот ток образует собственное магнитное поле и при этом он образует силы, действующие на проводники по направлению определяемой правилами левой руки. Эти силы создают электромагнитный вращающий момент, и он направлен в сторону противоположную вращению проводников, поэтому он является тормозным моментом. Для того чтобы предотвратить остановку якоря требуется приладить внешний вращающий момент противоположный тормозному моменту и больший по величине.
Условиями работы электрических генераторов является;
- Совпадение по направлению тока и ЭДС что указывает, что машина отдает электрическую энергию (мощность).
- Возникновение электромагнитного тормозного момента, из которого вытекает необходимость в получение извне механической энергии.
Двигатель — если подключить проводникам якоря к источнику тока, то по проводнику начинает происходить электрический ток. Этот ток будет создавать собственное магнитное поле, которое взаимодействие с магнитным полем полюсов будут, выталкивается, в результате совместного действия этих сил создается вращающий момент, который приводит якорь с проводниками во вращения. Одновременно при вращение подводников якоря в магнитном поле в каждом проводнике, индуктируется, ЭДС который определяется правилами правой руки. Следовательно, это ЭДС направлено против тока от внешнего источника, то есть она препятствует прохождения тока по проводникам. По этой причине для электродвигателей ее называют противно – ЭДС. Для того чтобы якоря продолжал, вращается и создавал требуемый момент (сила тяги) необходимо прикладывать к электродвигателю внешнее напряжение направленное на встречу против – ЭДС и больший по величине.
Условия работы электродвигателей.
- Совпадение по направлению электромагнитного момента и частоты вращения якоря это характеризует отдачу машиной в механической энергии.
- Возникновение в проводниках якоря против – ЭДС направлено против внешнего напряжения и тока и с него вытекает необходимость потребления извне электрической энергии.
Назначение коллектора. При вращение рамки в магнитном поле индуктированная в нем ЭДС непрерывно изменяется по величине и направлению, а соответственно изменяется и ток во внешней цепи по тому же самому закону. Для получения во внешней цепи постоянного по направлению тока концы рамок подсоединяют к полукольцам. А для того чтобы получить постоянный по величине ток применяют большое количество рамок. Такую конструкцию называют, коллектором и его назначение является выпрямление переменной ЭДС получаемой в рамке.
Коллектор позволяет сохранить в постоянном направлением тока и напряжение во вешней электрической цепи действующую между щетками несмотря то, что в витке якоря ЭДС и ток изменяется дважды за один полный оборот рамки. Коллектор предназначен для соединения якорной обмотки с внешней цепью.
Условные обзначения
Главный плюс силы обмотка возбуждения.
Веток -1 конвенционная машина (только в мощных)
Веток-2 обмотка дополнительного полюса (практически во всех машинах)
Веток-3 обмотка последовательного возбуждения (машины последовательного возбуждения)
Веток-4 обмотка независимого сил параллельного возбуждения.
Общее устройство коллекторных двигателей
Как и любой электродвигатель, коллекторный преобразует электрическую энергию в механическую. Он состоит из неподвижной части – статора и подвижной – ротора. В статоре располагаются обмотки возбуждения, ротор отвечает за передачу возникающей механической энергии. Одна из составляющих частей ротора – вал. С одной стороны, на валу размещён коллекторный узел, с помощью которого на обмотки ротора передаётся электрическая энергия.
Коллекторный двигатель: устройство
Статор состоит из корпуса, который защищает компоненты мотора от повреждений. Сверху и снизу корпуса крепятся магнитные полюса. Они необходимы для поддержания магнитного потока между статором и ротором.
Как подобрать солнечный коллектор нужной мощности
Другими словами, частота вращения якоря будет прямо пропорциональной напряжению и обратно пропорциональной возбуждающему потоку.
Благодаря этому полярность щеток генератора остается неизменным независимо от пространственного положения витка якоря.
То же самое будет иметь место при повороте каждого витка на 180°, когда их рабочие стороны перейдут под полюсы другой полярности. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора.
Коллекторный узел стоит рассмотреть подробнее. Иначе понять, как вращается ротор, сложно. Коллектор имеет цилиндрическую форму и набран из медных пластин (иногда называют ламелями), которые изолированы друг от друга слюдяными или текстолитовыми прокладками. Нет электрического контакта и с осью вала, к которому он крепится.
Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.
Когда ток протекает через обмотку якоря, возникает магнитное поле, направление которого можно определить с помощью правила буравчика. Постоянное магнитное поле статора взаимодействует с полем якоря, и он начинает вращаться благодаря тому, что одноименные полюса отталкиваются, притягиваясь к разноимённым. Что отлично иллюстрирует рисунок ниже.
Самым совершенным способом улучшения коммутации является применение компенсирующей обмотки, укладываемой в пазы полюсных наконечников основных полюсов, и включаемой последовательно с якорем. Она своим полем, изменяющимся пропорционально току якоря, в наиболее возможной степени, компенсирует реакцию якоря.
Неисправности впускного коллектора
Общие проблемы с впускным коллектором включают в себя:
- подсос воздуха;
- утечки охлаждающей жидкости или масла;
- снижение потока из-за накопления углерода;
- проблемы с впускными регулирующими заслонками.
В некоторых двигателях впускной коллектор может корродировать или растрескиваться, вызывая утечку вакуума или охлаждающей жидкости. Треснувший коллектор должен быть заменен, если его нельзя безопасно отремонтировать.
Утечки охлаждающей жидкости
В некоторых автомобилях во впускном коллекторе имеются каналы для охлаждающей жидкости, которые могут протекать из-за плохих прокладок или повреждений. Например, эта проблема была довольно распространенной в старых двигателях GM V6.
Если коллектор не поврежден и сопрягаемые поверхности находятся в хорошем состоянии, для решения проблемы обычно достаточно замены прокладок или повторного уплотнения коллектора. Если коллектор поврежден — его необходимо заменить.
Подсос воздуха
Изношенные прокладки впускного коллектора (на фото) часто вызывают утечки вакуума. Это может привести к неровному холостому ходу, остановке, а также к включению индикатора Check Engine. При этом на более высоких оборотах двигатель может работать нормально.
Например, коды неисправностей OBD-II P0171 и P0174 часто вызваны утечками во впускном коллекторе. Если подсос вызван плохими прокладками, ремонт включает снятие впускного коллектора, проверку и очистку монтажных поверхностей и замену прокладок. Посмотрите, например, это видео замене прокладок впускного коллектора на Рено Меган:
Часто источником подсоса воздуха может быть треснувший вакуумный шланг или патрубок, соединяющий впускной коллектор. В этом случае сломанный вакуумный шланг или патрубок необходимо заменить.
Иногда впускной коллектор может деформироваться, вызывая неправильное уплотнение прокладок. Деформированный впускной коллектор необходимо заменить. В некоторых автомобилях утечку вакуума можно определить по шипящему звуку из-под капота.
Отложения углерода
В некоторых двигателях, например, Volkswagen TDI Diesel, отложения углерода внутри впускного коллектора могут вызвать недостаток мощности, пропуски зажигания, дым и увеличение расхода топлива.
Проблемы с отложением углерода чаще встречаются в двигателях с турбонаддувом. Одним из основных симптомов является отсутствие тяги. Забитый впускной коллектор может потребоваться снять и почистить вручную.
В некоторых случаях замена впускного коллектора может оказаться более разумным решением, чем его очистка. Есть много скрытых областей внутри коллектора, которые не могут быть очищены.
Проблемы с заслонками изменения геометрии впуска
Регулирующие заслонки обычно приводятся в действие электрическими или вакуумными исполнительными механизмами. Часто резиновая диафрагма внутри вакуумного привода начинает протекать, и привод перестает работать.
Вакуумный исполнительный механизм легко проверить с помощью ручного вакуумного насоса. Если вакуумный привод пропускает, его необходимо заменить. Вместо насоса можно использовать медицинский шприц.
Блок управления двигателя (ЭБУ) запускает вакуумные приводы, включая и выключая небольшие электромагнитные клапаны контроля вакуума. Эти соленоиды также часто выходят из строя. Соленоиды тоже легко проверить с помощью ручного вакуумного насоса.
Другой распространенной проблемой является случай, когда клапан изменения геометрии впуска залипает из-за накопления углерода или когда клапан деформирован. В этом случае коллектор необходимо заменить.
Например, проблемы с впускным коллектором (регулирующим клапаном) часто встречаются в некоторых двигателях VW / Audi. Volkswagen продлил гарантию на впускной коллектор для определенных автомобилей Audi / Volkswagen 2008-2011 модельного года с двигателями 2.0 TFSI с кодами двигателей CBFA и CCTA.
Во многих автомобилях BMW неисправный клапан DISA, установленный во впускном коллекторе, также является общей проблемой. Посмотрите это видео о проверке клапана DISA в BMW:
Характеристики[править]
Следующая характеристика, на которую нужно обращать внимание при выборе двигателя, это номинальное напряжение на которое он рассчитан. Например, в классе двигателей «Speed 400» имеются моторы с рабочим напряжением 4,8 вольта, 6 вольт, и 7,2 вольта
Эти цифры указывают, с каким количеством аккумуляторов (банок) в батарее предназначен работать этот двигатель. Напряжение на одном NiCd (никель-кадмиевом) или NiMH (никель-металгидридном) аккумуляторе составляет 1,2 вольта. Не трудно подсчитать, что мотор с рабочим напряжением 4,8 вольт предназначен для работы от 4-х баночной аккумуляторной батареи. Однако, эти цифры не более чем ориентировочные, моторы способны прекрасно работать и при повышенных напряжениях. Обычно, для увеличения мощности, моделисты используют в батарее на 1-2 банки больше, чем рекомендовано. Таким образом, без увеличения размера и веса двигателя, в режиме «перекала», из него удается выжать дополнительную мощность, которая в моделизме «лишней» никогда не бывает.
Чаще всего, недорогие электродвигатели не имеют подшипников, вместо них стоят бронзовые втулки. Если главным фактором в выборе мотора является цена — то это вполне приемлемое решение. В том случае, если на первый план выходит КПД, имеет смысл выбрать двигатель с шарикоподшипниками. Такие моторы маркируются буквами BB — (Ball Bearing).
Еще один резерв мощности — в усилении магнитного потока от собственных постоянных магнитов двигателя. Для усиления этого потока, вокруг корпуса двигателя делается дополнительный магнитовод в виде широкого металлического кольца. Такие двигатели маркируются как «Turbo» или «Race». Особо стоит отметить двигатели 480-го класса. Это двигатели имеют размеры сопоставимые с размерами моторов 400-го класса, но при этом имеют значительно повышенную мощность. Это своего рода форсированные 400-е моторы. Их ставят там, где мощность является критическим фактором при ограниченных размерах. Щёточный узел у этих моторов сделан открытым, что улучшает охлаждение, и делает возможной замену щеток.
В процессе работы коллекторных двигателей происходит постепенный износ графитовых щеток и металла коллектора, по которым щетки скользят. Периодически щетки нужно менять, а двигатель прочищать от графитовой и металлической пыли. При продолжительной интенсивной работе следует также протачивать коллектор, для компенсации его неравномерного износа. После замены щеток и ухода за коллектором, двигатель желательно обкатать при пониженной нагрузке для того чтобы щетки правильно «притерлись» к коллектору. Это же касается и новых моторов. Одним из методов обкатки является непродолжительная работа двигателя в ёмкости с дистилированной водой.
Коллекторные двигатели производства других фирм являются либо аналогами серии «Speed», либо «тюнинговые» варианты двигателей специально предназначенные для тех или иных видов моделей (для автомоделей или для вертолетов).
Как правило, улучшение характеристик моторов достигается за счет применения мощных редкоземельных магнитов, обязательным использованием подшипников, прецизионным изготовлением коллекторного узла. Но даже с применением всех перечисленных технологических уловок, коллекторные двигатели уступают по всем параметрам бесколлекторным моторам.
Двигатель постоянного тока: коллекторный или бесколлекторный?
Идеальных решений в инженерии не существует, однако подобрать оптимальный вариант, который будет наилучшим образом соответствовать поставленным целям и задачам, можно всегда. Перед разработчиками любого оборудования, от простейшего до самого сложного, всегда стоит множество задач, которые требуют решения, и многие из них представляются в формате «или/или». Так, при использовании в механизмах электродвигателей постоянного тока часто возникает вопрос: отдать предпочтение коллекторному (щёточному) или бесколлекторному (бесщёточному) агрегату?
Коллекторные двигатели постоянного тока
Применение щёточных электродвигателей постоянного тока актуально в устройствах, работающих на умеренных и низких скоростях. Их основными преимуществами являются экономичность, простота использования и отсутствие встроенной электроники, благодаря которому двигатели такого типа легко справляются с кратковременными перегрузками.
Для обеспечения длительного срока службы коллекторному электродвигателю требуются грамотная эксплуатация и квалифицированное обслуживание: так, важно учитывать, что при работе такого двигателя на чрезмерно высоких скоростях щётки могут лететь с коллектора, а прохождение через механизм тока определённой плотности может стать причиной выгорания щёток. При эксплуатации коллекторного двигателя постоянного тока может потребоваться использование дисульфида молибдена или карбоната лития
Наличие щёток и коллектора сказывается на габаритах устройств: они значительно больше и тяжелее бесщёточных механизмов. Необходимость регулярного обслуживания ограничивает возможности свободной установки электродвигателя, делая необходимостью его размещение в доступном месте. Внутреннее расположение ротора усложняет теплообмен, а падение напряжения на щётках неминуемо ведёт к снижению эксплуатационных свойств электродвигателя.
Трение щёток о коллекторные контакты, неминуемо возникающее при работе щёточного электродвигателя, приводит к таким негативным последствиям, как снижение эффективности, высокий уровень шума, возникновение электромагнитных помех и возникновение искр: именно по этой причине коллекторные двигатели постоянного тока никогда не используются для работы во взрывоопасной среде.
Бесколлекторные двигатели постоянного тока
Отсутствие в бесколлекторных электродвигателях (BLDC) коллектора и щёток делает их более лёгкими и компактными, сокращает необходимое обслуживание до минимума и даёт ротору возможность вращения на более высокой скорости. Таким образом, отсутствие «проблемных» деталей лишило бесщёточные электродвигатели недостатков, свойственных щёточным агрегатам. Тем не менее, бесколлекторные двигатели имеют свои недочёты, главные из которых – конструктивная сложность и наличие встроенной электроники, делающее такие механизмы более дорогими, чем коллекторные.
Таким образом, выбирая между коллекторным и бесколлекторным двигателем постоянного тока, опираться нужно на такие факторы, как:
— финансовые возможности;— требования к характеристикам устройства;— наличие возможности обеспечения квалифицированного обслуживания;— сфера применения (учитываются шумность, возможность возникновения искр).
Широкий выбор щёточных и бесщёточных электродвигателей постоянного тока представлен в каталоге торгового дома Степмотор.
Источник